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Abstract 

 

The researcher provides an exact algorithm to solve the log-linear continuous 

(fractional) knapsack problem. The algorithm is based on two lemmas that follow from the 
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optimization problem with linear objective function that is associated with any solution of a 

linear optimization problem with (differentiable) concave objective function. 
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1. Introduction: 

In this paper, we provide an exact algorithm to solve the log-linear continuous 

(fractional) knapsack problem. For continuous knapsack problems, the “main” linear 

constraint, that is referred to as the “packaging constraint” is appended with the requirement 

that the decision variables are all less than or equal to one. 

There are many approximate algorithms for the general case where the objective 

functions are non-linear, separable, and concave. However, the only exact algorithms for 

continuous knapsack problems for non-linear and continuous objective functions are the ones 

for a “very specific” type of “quasi-linear” objective functions, discussed in Sharkey, 

Romeijn and Geunes (2011). Log-linear objective functions do not belong to the category of 

functions discussed by them. 

We now provide a motivation for a general continuous knapsack problem, extending 

the model of a linear continuous knapsack problem, that is available in Dantzig 

(1957).“Linear extensions” of the continuous linear knapsack problem as formulated by 

Dantzig, are available in the papers of Sinha and Zoltners (1979) and Witzgal (1980), 

although the former use it simply for the purpose of applying the “branch and bound 

algorithm” to the linear programming relaxation of the related integer valued knapsack 

problem. Such extensions are referred to as “linear continuous multi-choice knapsack 

problems”. However, the undoubted ancestors of continuous knapsack problems of any 

variety are “Value and Capital” (1939) or for that matter “A Revision of Demand Theory” 

(1956) both by Sir John Hicks. 

For some positive integer „L‟, let {1, …, L} be a non-empty finite set of activities. 
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Let m > 0 be the total quantity of a single resource available for allocation among the „L‟ 

activities. 

For j{1, …, L}, let pj> 0 be the maximum amount of the resource that can be allocated to 

activity j. 

Let p = (p1, …, pL) denote the n-tuple of upper bounds. 

Let R: ℝ+
𝐿ℝ be a function such for each y = (y1, …, yn)ℝ+

𝐿  with yj being the amount of the 

resource allocated to activity „j‟ for each j{1, …, n}, R(y) is the reward from the resource 

allocation vector y. 

The problem faced by the decision maker is the following. 

Maximize R(y) 

Subject to  𝑦𝑗
𝐿
𝑗=1  m, yj[0, pj] for j{1, …, L}. 

The version of this problem with separable objective function and without any bounds on the 

allocation of the resource to the activities has been discussed in Lahiri (2002).   

Let R
p
:[0,1]

L
ℝ be the function such that for all x = (x1, …, xn) [0, 1]

L
, R

p
(x) = R(p1x1, …, 

pLxL). 

Then the above problem is equivalent to the following continuous knapsack problem. 

Maximize R
p
(x) 

Subject to  𝑝𝑗𝑥𝑗
𝐿
𝑗=1  m, xj[0, 1] for j{1, …, L}.  

The continuous knapsack problem has considerable resemblance with one considered by 

Barucci and Gazzola (2014) and several references therein. 

Given any non-empty subset X of ℝ𝐿 it is easy to see that the set {xX| 𝑝𝑗𝑥𝑗
𝐿
𝑗=1  m, xj[0, 

1] for j{1, …, L}} = {xX|  pjxj
L
j=1 m, xj[0, 1] for j{1, … , L}}, for all > 0. 

However, it is quite possible that R
p
(x) = R(p1x1, …, pLxL)  R(pLx1, …, pLxL) = R

p
(x), 

for some > 0, and hence the set of solutions to the above maximization problem may be 

different from the set of solutions to the following maximization problem for some > 0,  

1. Maximize R(p1x1, …, pLxL) 

Subject to   𝑝𝑗𝑥𝑗
𝐿
𝑗=1 m, xj[0, 1] for j{1, …, L}. 

In the next section, we introduce the log-linear knapsack problem. 

2. The log-linear knapsack problem: 

Let 
L-1

 = {xℝ+
𝐿 | 𝑥𝑗

𝐿
𝑗=1  = 1} and let 

L-1
ℝ++

𝐿 , pℝ++
𝐿  and m > 0.  

The log-linear knapsack problem (LLKP) is the following optimization problem: 

Maximize  𝑗 𝑙𝑛 𝑥𝑗
𝐿
𝑗=1  

Subject to  𝑝𝑗𝑥𝑗
𝐿
𝑗=1  m, xj  1, xj 0 for all j{1, …, L}. 

As noted in the previous section the objective function depends on „p‟, but since „p‟ is fixed 

its contribution to the objective function in this case is the constant  𝑗 𝑙𝑛 𝑝𝑗
𝐿
𝑗=1 , which may 

be ignored in the “ordinally invariant” analysis that follows. 

It is easy to see that if x solves the problem, then xj> 0 for all j{1, …, L}. Further, by the 

strict concavity of the objective function, the optimal solution must be unique.  
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It is easy to see that if  𝑝𝑗
𝐿
𝑗=1  m, then clearly the unique optimal solution for LLKP has all 

coordinates equal to 1. Hence, let us consider the non-trivial case where  𝑝𝑗
𝐿
𝑗=1 > m.  

Since,  𝑝𝑗
𝐿
𝑗=1 > m, at the optimal solution, the “packaging constraint”  𝑝𝑗𝑥𝑗

𝐿
𝑗=1  m, must 

be satisfied as a strict equality. 

Since the packaging constraint must be satisfied with equality, LLKP reduces to the 

following optimization problem: 

Maximize  𝑗 𝑙𝑛 𝑥𝑗
𝐿
𝑗=1  

Subject to  𝑝𝑗𝑥𝑗
𝐿
𝑗=1 = m, xj  1, xj 0 for all j{1, …, L}. 

If 
𝑗𝑚

𝑝𝑗
 1 for all j{1, …, L}, 𝑥𝑗

∗ = 
𝑗𝑚

𝑝𝑗
 for all j{1, …, L} is the optimal solution to LLKP, 

since it is well known that it solves the following maximizationproblem, for which the 

variables are not bounded from above by 1, i.e., 

Maximize  𝑗 𝑙𝑛 𝑥𝑗
𝐿
𝑗=1  

Subject to  𝑝𝑗𝑥𝑗
𝐿
𝑗=1  m, xj 0 for all j{1, …, L}. 

Hence, suppose that {j| 
𝑗𝑚

𝑝𝑗
> 1} .  

It is well known (see theorem 3.1 in Lahiri (2006)or the theorem in Lahiri (2024)), that 

x
*
ℝ++

𝐿  solves LLKP if and only if x
*
 solves the following linear programming problem 

denoted Lin-LLKP. 

Maximize  
𝑗

𝑥𝑗
∗ 𝑥𝑗

𝐿
𝑗=1  

Subject to  𝑝𝑗𝑥𝑗
𝐿
𝑗=1  = m, xj  1, xj 0 for all j{1, …, L}. 

The dual of this problem is  

Minimize m +  
𝑗

𝐿
𝑗=1  

Subject to pj + j
𝑗

𝑥𝑗
∗ for all j{1, …, L}, j 0 for all j{1,…,L}. 

 is unconstrained in sign. 

3. The associated linear programming problem and its dual: 

If x
*
 solves Lin-LLKP, then by the Strong Duality theorem of LP, the optimal value 

of the dual is equal to the optimal value of the primal which in turn is equal to 1. 

Suppose 
*
, 

*
 solves the dual.  

The Complementary Slackness Conditions are the following: 


𝑗
∗(1- 𝑥𝑗

∗) = 0 and (
*
pj + 

𝑗
∗ - 

𝑗

𝑥𝑗
∗)𝑥𝑗

∗= 0for all j{1, …, L}. 

Since we require 𝑥𝑗
∗> 0, for all j{1, …, L} we therefore require that 

*
pj + 

𝑗
∗ - 

𝑗

𝑥𝑗
∗ = 0 for all 

j{1, …, L}. 


𝑗
∗> 0 implies 𝑥𝑗

∗ = 1 and 
𝑗

𝑥𝑗
∗>

*
pj, the latter being equivalent to 

𝑗

𝑝𝑗𝑥𝑗
∗>

*
. 

If 
𝑗
∗ = 0, then  

𝑗

𝑥𝑗
∗ = 

*
pj, the latter being equivalent to 

𝑗

𝑝𝑗𝑥𝑗
∗ = 

*
 

If 
𝑗
∗> 0 for all j{1, …, L} then we require 𝑥𝑗

∗ = 1 for all j{1, …, L}. 

Thus,  𝑝𝑗𝑥𝑗
∗𝐿

𝑗=1  =  𝑝𝑗
𝐿
𝑗=1 > m, violating the packaging constraint. 
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Hence {j| 
𝑗
∗ = 0} . Thus, {j| 

𝑗
∗ = 0} = {j| 

𝑗

𝑝𝑗𝑥𝑗
∗ = 

*
 } . 

Note: Since j> 0 for all j{1, …, L} and since both pj and𝑥𝑗
∗> 0 by hypothesis for all j{1, 

…, L} it must be the case that 
*
> 0. 

Hence, 
*
 = 

1− 𝑗
∗𝐿

𝑗=1

𝑚
> 0 would require,  

𝑗
∗𝐿

𝑗=1 < 1. 

If 
𝑗
∗ = 0 for all j{1, …, L}, then it must be the case that 

𝑗

𝑥𝑗
∗ = 

*
pj for all j{1, …, L}, 

whence j = 
*
pj𝑥𝑗

∗ for all j{1, …, L}. 

Summing over all j{1, …, L} and applying the packaging constraint, we get 
*
 = 

1

𝑚
 𝑗

𝐿
𝑗=1  

= 
1

𝑚
, since  𝑗

𝐿
𝑗=1  = 1. 

Thus, 𝑥𝑗
∗ = 

𝑗𝑚

𝑝𝑗
 for all j{1, …, L}. 

This would require 
𝑗𝑚

𝑝𝑗
 1 for all j{1, …, L}, contrary to our assumption that {j| 

𝑗𝑚

𝑝𝑗
> 1} 

. 

Thus, {j| 
𝑗
∗> 0} , whence, {j| 

𝑗

𝑥𝑗
∗>

*
pj } = {j|𝑥𝑗

∗ = 1} . 

Three lemmas: 

We now present three lemmas. 

Lemma 1: If for some j, k{1, …, L} it is the case that 
𝑗

𝑝𝑗

𝑘

𝑝𝑘
 and 𝑥𝑘

∗  = 1, the it must be the 

case that 𝑥𝑗
∗ = 1. 

Proof: Towards a contradiction suppose 𝑥𝑗
∗< 1. 

Since 𝑥𝑗
∗> 0, it must be the case that 

*
 =

𝑗

𝑝𝑗𝑥𝑗
∗>
𝑗

𝑝𝑗

𝑘

𝑝𝑘
 = 

𝑘

𝑝𝑘𝑥𝑘
∗

*
 implying 

*
>

*
, which is not 

possible. 

Thus, 𝑥𝑗
∗ = 1. Q.E.D. 

An immediate consequence of lemma 1 is the following lemma. 

Lemma 2: If for some jargmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
 it is the case that 𝑥𝑗

∗ = 1, then for all 

jargmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
 it must be the case that 𝑥𝑗

∗ = 1. 

As a result of lemmas 1 and 2, we have the following lemma. 

Lemma 3: If {j| 
𝑗𝑚

𝑝𝑗
> 1} , then 𝑥𝑗

∗ = 1 for all jargmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
. Further, 

argmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
 is a non-empty proper subset of {1, …, L}. 

Proof: Suppose {j| 
𝑗𝑚

𝑝𝑗
> 1}  and towards a contradiction suppose that for some 

jargmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
 it is the case that 𝑥𝑗

∗< 1. Then, by lemma 2, it must be the case that 𝑥𝑗
∗< 

1, for all jargmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
. 

By lemma 1, it follows that 𝑥𝑗
∗< 1 for all j{1, …, L} and hence 

𝑗
∗ = 0 for all j{1, …, L}. 

Thus, {j| 
𝑗
∗> 0} = , leading to a contradiction. 
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Thus, it must be the case that 𝑥𝑗
∗ = 1 for all jargmax𝑘{1,…,𝐿}

𝑘

𝑝𝑘
. 

Since we have assumed,  𝑝𝑗
𝐿
𝑗=1 > m, 𝑥𝑗

∗ = 1 for all j{1, …, L}, would lead to a violation of 

the packaging constraint. 

Hence, it must be the case that argmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
 is a proper subset of {1, …, L}.  

This, proves the lemma. Q.E.D. 

4. The “exact” algorithm: 

Lemma 3 yields an iterative method of solving LLKP. 

Step 1: If 
𝑗𝑚

𝑝𝑗
 1 for all j{1, …, L}, 𝑥𝑗

∗ = 
𝑗𝑚

𝑝𝑗
 for all j{1, …, L} is the optimal solution to 

LLKP. If not, i.e., {j| 
𝑗𝑚

𝑝𝑗
> 1} , then let 𝑥𝑗

∗ = 1 for all jargmax𝑘{1,…,𝐿}
𝑘

𝑝𝑘
. 

Let J
1
 = {1, …, L}\argmax𝑘{1,…,𝐿}

𝑘

𝑝𝑘
. 

Since  𝑝𝑗
𝐿
𝑗=1 > m, it must be the case that 𝑝𝑗j𝐽1 > m -  𝑝𝑗j argmax 𝑘{1,…,𝐿}

𝑘
𝑝𝑘

 = m -  𝑝𝑗j𝐽1  

Step 2: Consider the revised problem 

Maximize  𝑗 𝑙𝑛 𝑥𝑗j𝐽1  

Subject to  𝑝𝑗𝑥𝑗j𝐽1 = m -  𝑝𝑗j𝐽1   xj  1, xj 0 for all jJ
1
. 

The above problem is equivalent to the following problem. 

Maximize  𝑗
(1)

𝑙𝑛 𝑥𝑗j𝐽1  

Subject to  𝑝𝑗𝑥𝑗j𝐽1 = m -  𝑝𝑗j𝐽1   xj  1, xj 0 for all jJ
1
, where for all hJ

1
, ℎ

(1)
 = 

ℎ

 𝑗j𝐽 1
. 

If 
𝑗
 1 

(𝑚− 𝑝𝑗j𝐽 1 )

𝑝𝑗
 1 for all jJ

1
, then let 𝑥𝑗

∗ = 
𝑗
 1 

(𝑚− 𝑝𝑗j𝐽 1 )

𝑝𝑗
 for all jJ

1
. If not, i.e. {jJ

1
| 

𝑗
 1 

(𝑚− 𝑝 𝑗j𝐽 1 )

𝑝 𝑗
> 1}, then let 𝑥 𝑗

∗  = 1 for all jargmax𝑘 𝐽 1

𝑘

𝑝 𝑘
. 

Since this process cannot go on forever, we will finally arrive at the situation where either all 

the values of 𝑥 𝑗
∗  for j{1, …, L} have been obtained by repeated application of the above 

procedure or there exists h{1, …, L} such that the values 𝑥𝑗
∗  for all j{1, …, L}\{h} have 

been determined by repeated application of the above procedure, so that 𝑥 𝑗
∗ = 1 for all j{1, 

…, L}\{h}. In the latter case, 𝑥 ℎ
∗ = 

𝑚− 𝑝 𝑗𝑗 ℎ

𝑝 ℎ
. 

Since by hypothesis,  𝑝 𝑗
𝐿
𝑗 =1 > m the only way that by repeated application of the above 

procedure 𝑥 𝑗
∗  would have been determined for all j{1, …, L} without resorting to the 

formula𝑥 ℎ
∗ = 

𝑚− 𝑝 𝑗𝑗 ℎ

𝑝 ℎ
 for some h{1, …, L}, is when the solution to the last LLKP problem 

yields the solution for more than one variable and agrees with the one obtained by dropping 

the upper bound of 1 on the variables whose values are determined in the last LLKP, with all 

values of the variables determined in previous LLKP‟s being equal to 1. 

5. A numerical example to illustrate the procedure: 

Let L = 3 and suppose j = 
1

3
 for j = 1, 2, 3. Let p1 = 1, p2 = 2, p3 = 3 and m = 5. 
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Thus, 
1

𝑝 1
 = 

1

3
, 
2

𝑝 2
 = 

1

6
 and 

3

𝑝 3
 = 

1

9
. 

The log-linear knapsack problem is the following. 

Maximize  
1

3
 ln x1 +  

1

3
ln x2 +  

1

3
ln x3,  

Subject to x1 + 2x2 + 3x3 5, 1  xj 0 for j = 1, 2, 3. 

Note that p1 + p2 + p3 = 6 > 5 = m. Hence (1, 1, 1) is not feasible. 

For the unconstrained problem,  

Maximize 
1

3
ln x1 + 

1

3
ln x2 + 

1

3
ln x3,  

Subject to x1 + 2x2 + 3x3 5, xj 0 for j = 1, 2, 3,  

the optimal solution is (
5

3
, 

5

6
, 

5

9
) which is not feasible for this log-linear knapsack problem. 

Since, 
1

𝑝 1
>
𝑗

𝑝 𝑗
 for j = 2, 3, according to our algorithm, at the optimal solution 𝑥 1

∗ = 1. 

Since 

1

3
1

3
 + 

1

3

 = 
1

2
, we consider the revised problem 

Maximize  
1

2
ln x2 +  

1

2
ln x3,  

Subject to 2x2 + 3x3 5, 1  xj 0 for j = 2, 3. 

For the unconstrained problem, 

Maximize  
1

2
ln x2 +  

1

2
ln x3,  

Subject to 2x2 + 3x3 4, xj 0 for j = 2, 3, 

the optimal values of x2 and x3 are 1 and 
2

3
 respectively and these values are feasible for the 

log-linear knapsack problem for x2 and x3. 

Hence, these must be the optimal values of x2 and x3 for the log-linear knapsack problem we 

started out with. Thus, the optimal solution for the original log-linear knapsack problem is 𝑥 1
∗ 

= 1, 𝑥 2
∗ = 1 and 𝑥 3

∗ = 
2

3
. 
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