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Abstract

The researcher provides an exact algorithm to solve the log-linear continuous
(fractional) knapsack problem. The algorithm is based on two lemmas that follow from the
application of weak duality theorem and complementary slackness theorem to the linear
optimization problem with linear objective function that is associated with any solution of a
linear optimization problem with (differentiable) concave objective function.

Keywords: log-linear, knapsack problem, linear optimization problem, exact algorithm,
duality theorem, complementary slackness.

1. Introduction:

In this paper, we provide an exact algorithm to solve the log-linear continuous
(fractional) knapsack problem. For continuous knapsack problems, the “main” linear
constraint, that is referred to as the “packaging constraint” is appended with the requirement
that the decision variables are all less than or equal to one.

There are many approximate algorithms for the general case where the objective
functions are non-linear, separable, and concave. However, the only exact algorithms for
continuous knapsack problems for non-linear and continuous objective functions are the ones
for a “very specific” type of “quasi-linear” objective functions, discussed in Sharkey,
Romeijn and Geunes (2011). Log-linear objective functions do not belong to the category of
functions discussed by them.

We now provide a motivation for a general continuous knapsack problem, extending
the model of a linear continuous knapsack problem, that is available in Dantzig
(1957).“Linear extensions” of the continuous linear knapsack problem as formulated by
Dantzig, are available in the papers of Sinha and Zoltners (1979) and Witzgal (1980),
although the former use it simply for the purpose of applying the “branch and bound
algorithm” to the linear programming relaxation of the related integer valued knapsack
problem. Such extensions are referred to as “linear continuous multi-choice knapsack
problems”. However, the undoubted ancestors of continuous knapsack problems of any
variety are “Value and Capital” (1939) or for that matter “A Revision of Demand Theory”
(1956) both by Sir John Hicks.

For some positive integer ‘L’, let {1, ..., L} be a non-empty finite set of activities.
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Let m > 0 be the total quantity of a single resource available for allocation among the ‘L’
activities.

For je{l, ..., L}, let p;> O be the maximum amount of the resource that can be allocated to
activity j.
Let p = (p, ..., pv) denote the n-tuple of upper bounds.
Let R: RX—R be a function such for each y = (ys, ..., yn)eR4 with y; being the amount of the
resource allocated to activity ‘j” for each je{l, ..., n}, R(y) is the reward from the resource
allocation vector y.
The problem faced by the decision maker is the following.
Maximize R(y)
Subject to 7_; y;<m, y;e[0, pj] for je{1, ..., L}.
The version of this problem with separable objective function and without any bounds on the
allocation of the resource to the activities has been discussed in Lahiri (2002).
Let RP:[0,1]"—R be the function such that for all x = (X, .., X»)e [0, 1]", RP(X) = R(piX4, ...,
PLXL).
Then the above problem is equivalent to the following continuous knapsack problem.
Maximize RP(x)
Subject to Y_; p;x<m, xje[0, 1] forje{1, ..., L}.
The continuous knapsack problem has considerable resemblance with one considered by
Barucci and Gazzola (2014) and several references therein.
Given any non-empty subset X of R” it is easy to see that the set {XEX|Z}=1 p;x<m, xje[0,
1] forje{l,...,L}} = {xeX|ZjL=1 o pjxj <oam, x;€[0,1] forje(d,...,L}}, forall a>0.
However, it is quite possible that RP(x) = R(p1Xy, ..., puXL) # R(apiXy, ..., apiXy) = R*(x),
for some o> 0, and hence the set of solutions to the above maximization problem may be
different from the set of solutions to the following maximization problem for some a> 0, o=
1. Maximize R(apiXy, ..., apLXL)
Subject to 7_; a p;x;<om, x;e[0, 1] for je {1, ..., L}.
In the next section, we introduce the log-linear knapsack problem.
2. The log-linear knapsack problem:

Let A' = {xeR4[%}_; x = 1} and let acA"'NRL ., peRY, and m > 0.
The log-linear knapsack problem (LLKP) is the following optimization problem:
Maximize Z}zl a Inx;
Subjectto 37— pjx<m, x;<1,x 0 forall je{l, ..., L}.
As noted in the previous section the objective function depends on ‘p’, but since ‘p’ is fixed
its contribution to the objective function in this case is the constant Z}zl o Inp;, which may
be ignored in the “ordinally invariant” analysis that follows.
It is easy to see that if x solves the problem, then x;> O for all je {1, ..., L}. Further, by the
strict concavity of the objective function, the optimal solution must be unique.
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It is easy to see that if Z}=1 p;j< m, then clearly the unique optimal solution for LLKP has all
coordinates equal to 1. Hence, let us consider the non-trivial case where Z]L 1 p;>m.

Since, Z}Zl p;> m, at the optimal solution, the “packaging constraint” ] ~1Pj%< m, must
be satisfied as a strict equality.

Since the packaging constraint must be satisfied with equality, LLKP reduces to the
following optimization problem:

Maximize X7, ¢ Inx;

Subject to YXF_; pjx=m, <1, x> 0forallje{l,...,L}.

If %ﬁ 1forallje{l, ..., L}, x' = % forall je{l, ..., L} is the optimal solution to LLKP,
since it is well known that it solves the following maximizationproblem, for which the
variables are not bounded from above by 1, i.e.,

Maximize 7, ¢ Inx;

Subject to /_; p;x<m, x;z 0 forall je{l, ..., L}.

Hence, suppose that {j| %> 1} #.

It is well known (see theorem 3.1 in Lahiri (2006)or the theorem in Lahiri (2024)), that
X eR%, solves LLKP if and only if X~ solves the following linear programming problem
denoted Lin-LLKP.

o
Maximize Z] —1 x]-
J

Subject to ijlpjx]- =m, x;<1,x20forall je{l,...,L}.
The dual of this problem is
Minimize mj + X_; p

Subject to Ap; + u,>—f for all je{l,...,L}, y=0forall je{l,...,L}.

A is unconstrained in sign.
3. The associated linear programming problem and its dual:
If X" solves Lin-LLKP, then by the Strong Duality theorem of LP, the optimal value
of the dual is equal to the optimal value of the primal which in turn is equal to 1.
Suppose A", 1" solves the dual.
The Complementary Slackness Conditions are the following:

#(L-x7) =0and (\'p; + 47 - D)xr=Ofor all je{1, ..., L},
J

Since we require x;> 0, for all je {1, ..., L} we therefore require that A pj + ,u -L =0 forall
je{l,...,L}.
4> 0 implies x* = 1 and i{;>7L*p,-, .
Xj iXj
If 4 =0, then :—;—x p;, the =\

j ]x]

If,u].> 0 for all Je{l ., L} then we require x = 1 forall je {1, ..., L}.
Thus, Z] 1Pj% ] —1p;> M, violating the packaging constraint.
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Hence {j| 4 = 0} =¢. Thus, {j| 4 = ‘7» }#0.

Note: Since o> 0 for all je {1, ..., L} and since both pj andx;"> 0 by hypothesis for all je{1,
., L} it must be the case that 1> 0.

Hence, " = szl—zlﬂb 0 would require, Z}=1 H< 1.

If 4 = 0 for all je{1, ..., L}, then it must be the case that :_j = A'p; for all je{1, ..., L},
whence o = A" pjx” for all je {1, ..., L}.

Summing over all je {1, ..., L} and applying the packaging constraint, we get 1" = %2}21 0
= % since Xj_; o5 = 1.

Thus, x" = ?for all je{l, ..., L}.

This would require %S 1 for all je{l, ..., L}, contrary to our assumption that {j| %> 1}
#0.

Thus, {j| 4> 0} %9, whence, {j| %>x*pj }={ily" = 13} #9.

Three lemmas:
We now present three lemmas.

Lemma 1: If for some j, ke {1, ..., L} it is the case that %2:‘—" and x; = 1, the it must be the
i Pk

case that xj* =1.

Proof: Towards a contradiction suppose x;'< 1.

Since x> 0, it must be the case that A" = I ST5% = % 53" implying A">1", which is not
Tpix] pj PK Prxp

possible.

Thus, x" = 1. Q.E.D.

An immediate consequence of lemma 1 is the following lemma.

Lemma 2: If for some jeargmax; ., ___L}% it is the case that x = 1, then for all

jeargmaxy o, ... } |t must be the case that x;" = 1.

As a result of Iemmas 1 and 2, we have the following lemma.

Lemma 3: If {j| 25> 1} =4, then x' = 1 for all jeargmaxkg{l,__,L}Z—k. Further,
k

argmaxy c(1,..,1} ; isa non-empty proper subset of {1, ..., L}.

Proof: Suppose {j| ﬂ> 1} #¢ and towards a contradiction suppose that for some
jeargmax;, o1, . L} |t is the case that x;"< 1. Then, by lemma 2, it must be the case that x;'<
1, for all jeargmaxy (1,1} p—k

By lemma 1, it follows that x;’< 1 for all je {1, ..., L} and hence ,u;‘ =0forallje{l,...,L}.
Thus, {j| y]i*> 0} = ¢, leading to a contradiction.
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Thus, it must be the case that x;" = 1 for all jeargmaxy (1,13 %.
k

Since we have assumed, Z}=1 p;>m, x" =1forall je{l, ..., L}, would lead to a violation of
the packaging constraint.

Hence, it must be the case that argmaxy .1, .1} Z—’; is a proper subset of {1, ..., L}.

This, proves the lemma. Q.E.D.

4. The “exact” algorithm:
Lemma 3 yields an iterative method of solving LLKP.

Step 1: If a;—mé 1forallje{l,...,L}, x = OZ—m forall je {1, ..., L} is the optimal solution to
j j

LLKP. If not, i.e., {j| OZ—Y_n> 1} #¢, then let x" = 1 for all jeargmax; (1, .1 Z—".
] ﬂ k
7
Since Z}=1pj> m, it must be the case thatd;;c;1p;>m - Z.eargmax P =M Yie/1 D)
Yy

LetJ' = {1, ..., LM\argmax .11

J
Step 2: Consider the revised problem
Maximize ¥;c;1 o5 Inx;
Subject to ¥ 1p;5=m- Y 1p; X< 1, x 0 forall jeJ*.
The above problem is equivalent to the following problem.
Maximize ;1 09.(1) In x;
Subject to Yj1pj %= m - N1 p; % < 1, x> 0 for all jed?, where for all hel', o\ =
Ch

Zje]Iaj

o) )
D -y 1p; _ Dim-3. 1 . L
MS 1 for all jeJ?, then let x; = M for all jeJ'. If not, i.e. {jedY|
j j

If

)
#j&fip/g 1}, then let - = 1 for all jeargmax, 6/1%.
Since this process cannot go on forever, we will finally arrive at the situation where either all
the values of x; for je{l, ..., L} have been obtained by repeated application of the above
procedure or there exists he {1, ..., L} such that the values x; forall je{l, ..., L}\{h} have

been determined by repeated application of the above procedure, so that x ;= 1 for all je{1,

..., L}\{h}. In the latter case, x} = ﬂpﬂ}l.
h

Since by hypothesis, Z/‘-:lp/> m the only way that by repeated application of the above

procedure x; would have been determined for all je{l, ..., L} without resorting to the

formulax), = @;LWL for some he{l, ..., L}, is when the solution to the last LLKP problem
h

yields the solution for more than one variable and agrees with the one obtained by dropping
the upper bound of 1 on the variables whose values are determined in the last LLKP, with all
values of the variables determined in previous LLKP’s being equal to 1.

5. A numerical example to illustrate the procedure:

LetL:Sandsupposeoc,-:éforjzl, 2,3. Letp1=1,p2=2,p3=3and m=5.
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The log-linear knapsack problem is the following.

Maximize é In x; + éln Xp + éln X3,

Subject to X; + 2%, + 3x3<5,1>x>0forj=1,2, 3.

Note that p; + p2 + p3 =6 >5=m. Hence (1, 1, 1) is not feasible.
For the unconstrained problem,

.. 1 1 1
Maximize gln X1 + gln Xy + gln X3,

Subject to X; + 2x, + 3x3< 5, = 0 forj =1, 2, 3,

the optimal solution is (g, 2 g) which is not feasible for this log-linear knapsack problem.

Since, %>§L for j = 2, 3, according to our algorithm, at the optimal solution x] = 1.
1 J

1

. 3 1 . .
Since 2+ = 5 we consider the revised problem

3+3

.. 1 1
Maximize Eln Xo + Eln X3,

Subject to 2x, + 3x3< 5,1 > x= 0 forj = 2, 3.
For the unconstrained problem,

Maximize %In Xo + %In X3,
Subject to 2x, + 3xz< 4, xi= 0 for j = 2, 3,
the optimal values of x, and x3 are 1 and 2 respectively and these values are feasible for the

log-linear knapsack problem for x, and Xs.
Hence, these must be the optimal values of x, and x3 for the log-linear knapsack problem we
started out with. Thus, the optimal solution for the original log-linear knapsack problem is x|

* * 2
:1,x2:1and;(3:§.
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